

CONTENT:

INTRODUCTION	4
TECHNICAL DATA	5
BEARINGS ARRANGEMENT	7
LIFE CALCULATION	9
SINGLE ROW CYLINDRICAL ROLLER BEARINGS FOR AXLEBOXES	10
SINGLE ROW CYLINDRICAL ROLLER BEARINGS FOR LOCOMOTIVES	11
RULES OF MOUNTING AND DISMOUNTING OF BEARINGS	14
QUALITY MANAGEMENT	15
FREIGHT WAGON AXLEBOXES	16
ELECTRICALLY INSULATED BEARINGS	18
RESEARCH AND DEVELOPMENT	18
ROLLING BEARINGS TESTING	18
STANDARD SPECIFICATIONS	19
TECHNICAL SUPPORT FOR USERS OF THE BEARINGS	19

KIN

INTRODUCTION

COMPANY PROFILE

Production program of the KINEX BEARINGS includes wide assortment of standard and special rolling bearings for different industrial branches. Production plants went through complicated historical development from their establishment and presently the KINEX BEARINGS with its large scale production program belongs to global producers of the rolling bearings.

Production of the rolling bearings has a long term tradition. KINEX BEARINGS offers complex services in the field of research, development and production of the rolling bearings and rolling elements. One of the most significant industrial segments in term of volume of sold bearings is the railway industry. Beginning of production in segment of single row roller bearings for the railway vehicles dates from year 1959. A commercial corporation KINEX BEARINGS, a.s. belongs at the moment to leaders in field of the roller bearings supplies for axles of the railway vehicles in Europe and disposes of validations for different products supplies needed for application of the above mentioned bearings in various territories. Production of the single row roller bearings that are used in railway industry is assured in accordance with requirements of the European standard EN 12080. KINEX BEARINGS, a.s. (Joint Stock Company) offers also deliveries of the bearing units for axles of the goods wagons with load on the axle 22.5 tons and axle load of 25 tons.

APPLICATION

- bearings of the axles for the goods wagons, passenger wagons, electric and diesel locomotives, electric and diesel engine vehicles and motor units
- gear boxes, driving traction motors and generators, motors of compressors (air pumps) and drives of ventilators, actuators and charging
 generator of the electric and diesel locomotive engines

REFERENCES

Manufacturers

BONATRANS (FZ), GATX (PL, DE), GHH Valdunes (F), Gredelj (HR), IRS (Astra Arad, Meva, Romvag) (ROM), LUCCHINI (I), MAV TISZAVAS (H), Škoda Transportation (CZ), Tábor Szynowy Opole (PL), Tatravagónka (SK)

Railway Companies

BR (GB), CFL (LUX), ČD (CZ), Deutsche Bahn (D), HŽ (HR), MAV (H), ÖBB (A), PKP CARGO (PL), PKP INTERCITY (PL), RZD (RUS), SBB (CH), SISTEMA DETREN ELECTRICO URBANO (MEX), SNCB (B), SZ (SLO), TCDD (TR), ZSSK (SK), ZSSK CARGO (SK), ŽS (SRB)

TECHNICAL DATA

ROLLING BEARINGS FOR THE RAILWAY VEHICLES

Rolling bearings used in production of railway vehicles are produced in standardized types ISO and also as special single row cylindrical roller bearings. The main advantages of cylindrical roller bearings usage are their simple design, easy assembly, easy maintenance and reliability in operation. Cylindrical roller bearings are characterized by low friction resistance, low temperature, low component wear and high load rating.

Essential condition of reliable operation of cylindrical roller bearings is observance of mounting and dismounting principles:

- fitting tolerances
- shape deviations
- warming up of bearings (inner rings)
- qualified mounting workplace
- · trained and qualified employees
- using of suitable jigs
- keeping of fixed procedures

Special single row cylindrical roller bearings used in axle railway vehicle seatings are produced with machined brass cage and glass-fibre inforced polyamide cage. Reinforced polyamide cage improves reliability and safety. Single row cylindrical roller bearings in design NU, NJ, NUP used in railway drive systems and traction motors are produced with machined brass cage version E.

MATERIAL

Structure of the steel after heat treatment:

Martensite in which the residual austenite varies in the range from 3 to 10%. This residual austenite in axle bearings is $\leq 2\%$.

Hardness of the bearing rings after heat treatment is in the range:

58-64 HRC (dispersion of measured values between all rings of one bearing must not be more than 3 HRC) To assure dimensional stability through the whole operational period, the bearing rings for axle bearings are stabilized by means of heat treatment on 200 °C (S1).

Hardness of rollers after heat treatment is in the range:

60-65 HRC (dispersion of measured values between all rollers of one bearing must not be more than 4 HRC)

Bearing rings:

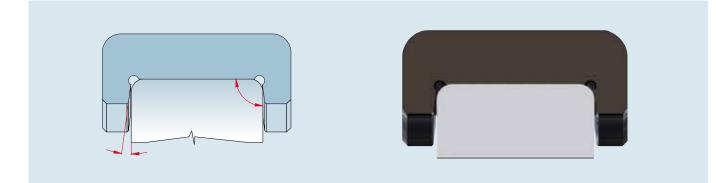
Chromium steel through-hardening in the whole cross section: 100 Cr6, 100 CrMnSi6-4

Bearing rollers:

Chromium steel through-hardening in the whole cross section: 100 Cr6, 100 CrMnSi6-4

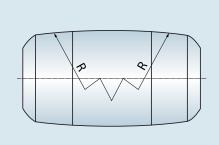
Cages:

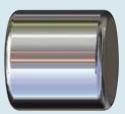
Polyamide cage: material PA 66GF25 HZ Machined brass cage: material CuZn40Pb2, CuZn37Al1, CuZn3IMnAM, MS58Al



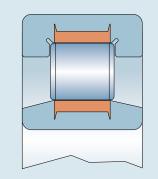
TECHNICAL DATA

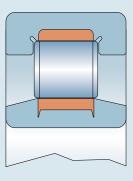
INTERNAL DESIGN

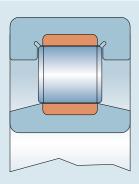

Design of roller face and quide flange


• it optimizes lubrication of a contact zone in the contact area and thus it increases axial load carrying capacity of the bearing.

ZB profile of the roller raceway


• it takes part on minimizing of the edge stress and thus also on increasing of durability and reliability of the bearing.





ZB profile of rollers

• it optimizes the contact effective stress created on external and internal bearing ring

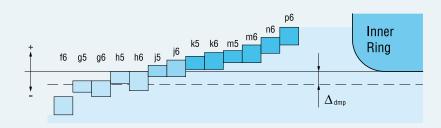
Cylindrical roller without ZB profile and non-convexed raceways of the rings. Roller ZB profile and raceway ZB profile of the outer ring. Non-convexed raceway of the inner ring. Roller ZB profile and convexed raceways of the rings.

BEARING ARRANGEMENT

INFLUENCE OF ARRANGEMENT ON BEARING LIFE

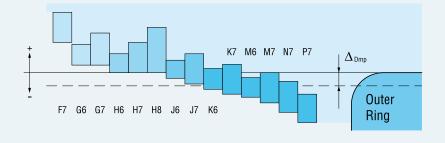
Bearing life is considerably influenced by arrangement of bearing rings on the shaft and at the housing. These parts should be manufactured with required quality and tolerances. According to the concrete operational conditions the rings are either push fitted (clearance fit) or force fitted (interference fit)

Essential condition for bearing arrangement is that the ring loaded on its circumference must be force fitted. Recommended values of shaft diameters and housing bore tolerances take into consideration all operational influences (type, direction and intensity of load, temperature ...) with loading during the whole workload time.


Recommended tolerances of journals diameters and housing bores

Arrangament	Journal	diameter	Tolerance	Housing here diameter	Tolerance	
Arrangement	Ball			Housing bore diameter	TOTETATICE	
Fans	18 to 100	to 40	j6	Fans	J7	
Generators	100 to 200	40 to 140	k6	Electic motors	K7	
	18 to 100	to 40	k5			
Electric motors	100 to 200	40 to 140	m5	Traction motors	M7	
	140 to 200	100 to 140	m6			
Axlebox bearings		50 to 140	*n6, p6	Aylaboy bearings	H7	
Traction motorbearings		140 to 500	πο, μο	Axlebox bearings	H/	

* It is necessary to use bearings with higher radial clearance at these arrangement.


Journal diameter tolerance limiting deviations

Journal nominal diameter		k	5	m	15	j6		j6		j6		k6 m6		k6		m6		n6		р6	
m	m		μμ																		
over	to	upper	lower																		
30	50	+13	+2	+20	+9	+11	-5	+18	+2	+25	+9	+33	+17	+42	+26						
50	80	+15	+2	+24	+11	+12	-7	+21	+2	+30	+11	+39	+20	+51	+32						
80	120	+18	+3	+28	+13	+13	-9	+25	+3	+35	+13	+45	+23	+59	+37						
120	180	+21	+3	+33	+15	+14	-11	+28	+3	+40	+15	+52	+27	+68	+43						
180	250	+24	+4	+37	+17	+16	-13	+33	+4	+46	+17	+60	+31	+79	+50						

Bore diameter tolerance limiting deviations

Nominal bore diameter		H7		J	7	к	7	M7		
m	im				μ	m				
over	to	upper	upper lower		lower	upper	lower	upper	lower	
50	80	+30	+30 0		-12	+9	-21	0	-30	
80	120	+35	0	+22	-13	+10	-25	0	-35	
120	180	+40	0	+26	-14	+12	-28	0	-40	
180	250	+46	0	+30	-16	+13	-33	0	-46	
250	315	+52 0		+36	-16	+16	-36	0	-52	
315	400	+57	0	+39	-18	+17	-40	0	-57	

SHAPE DEVIATIONS

The further condition to achieve high bearing life in arrangements is to keep prescribed shape deviations of supporting areas and their surface quality. The shape deviations of supporting surfaces i.e. permissible deviation from roundness and cylindrical shape and permissible run – out of bearing surfaces with regard to the axle must be smaller than range of diameter tolerances.

Tolerance class	Place of arrangement	Permissible deviation from cylindrical shape	Permissible run-out of bearing surfaces with regard to the axle
	shaft	IT 5/2	IT 3
P0, P6	shape	IT 6/2	IT 4

Values of standard tolerances IT

Nominal diameter		Tolerance class							
mm			μm						
over	to	IT 2	IT 3	IT 4	IT 5	IT 6			
18	30	2.5	4	6	9	13			
30	50	2.5	4	7	11	16			
50	80	3	5	8	13	19			
80	120	4	6	10	15	22			
120	180	5	8	12	18	25			

Arrangement quality is influenced also by roughness of bearing supporting surfaces. These surfaces are smoothened at mounting procedures. Interface in the arrangement is more reduced if the surfaces are more roughness.

Supporting surface	Nominal diameter of the bearing					
Supporting surface	from 10 to 80	over 80				
	Ra _{max} µm					
Shaft	0.63	1.25				
Housing's bore	0.63	1.25				
Face of jounal shaft or housing	1.25	1.25				

SINGLE – ROW CYLINDRICAL ROLLER BEARINGS LIFE CALCULATION

SINGLE - ROW CYLINDRICAL ROLLER BEARINGS LIFE CALCULATION FOR RAILWAY VEHICLE AXLEBOXES

Single-row cylindrical roller bearings life calculation for railway vehicle axleboxes is based on the radial static load acting on the bearings of one wheel set i.e. axle load which is calculated from the equation:

$$G_1 = \frac{G}{n} - G_2$$

whe	re:		
G	- weight of the vehicle	(kN)	
G1	- radial static load acting on one wheel set (axle load)	(kN)	
G_2	- weight of a wheel set and others unsprung parts	(kN)	
n	- number of wheel sets	. ,	

Then radial static load acting on one bearing will be:

$P_{or} = \frac{G_1}{4}$	
where: G ₁ - radial static load acting on one wheel set P _{or} - radial static load acting on one bearing	(kN) (axle load) (kN)

Radial equivalent dynamic load acting on one bearing is calculated from the equation:

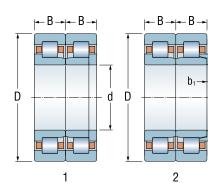
	$P_r = P_{or} \cdot f_d$	
Pr	- radial equivalent dynamic load acting on one bearing	(kN)
P _{or}	- radial static load acting on one bearing	(kN)
F _d	- factor of additional forces	(see table 1)

Factors of additional forces	Table 1
Type of vehicle	f _d
Passenger carriages	1.2 to 1.3
Goods, self – discharging and ingot wagons	1.2 to 1.4
Locomotives	1.3 to 1.8

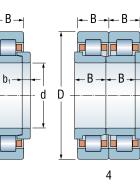
Basic bearing life can be calculated from the equation:

$$L_{10km} = \left(\frac{C_r}{P_r}\right)^{\frac{10}{3}} \pi . D_k . 10^{-3}$$
where:

$$L_{10km} - \text{basic bearing life} \qquad (10^6 \text{ km})$$

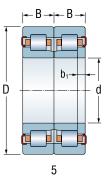

$$C_r - \text{basic radial dynamic load rating (see dimension tables)} \qquad (kN)$$

$$P_r - \text{radial equivalent dynamic load acting on one bearing} \qquad (kN)$$


$$D_k - \text{diameter of the vehicle wheel} \qquad (m)$$

FOR AXLEBOXES

KI



-b₁

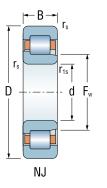
d

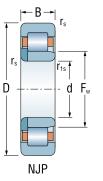
	Dimer	nsion		Basic loa	ad rating	Maxim railv	Weigh b						dial ance	Toler
d	D	В	b ₁	dyn.	static	Maximum speed of railway vehicle	Weight bearings designation Fig.	Bearings designation			Cage		m	Tolerance class
				cr	cor	le of	ir of					min	max	SS
	m	m		k	N	km/hour	kg							
100	180	60.3	-	333.5	444.4	160	12	PLC 49-200-2-1	PLC 49-201-2 ^{1) 3) 4)}	1	TNG	105	140	P6
110	215	73	-	494.5	668.6	160	24.9	PLC 410-207-1	PLC 410-208-1 ^{1) 2) 4)}	1	М	105	160	P6
118	215	80	-	519.8	740.9	160	25.7	PLC 410-213-3	PLC 410-214-3 ^{1) 2) 4)}	1	М	125	165	P0
	240	80		553.8	742.5	160	32.3	PLC 410-13-2-3	PLC 410-14-2-3 ^{1) 3) 4)}	1	TNG	120	160	P6
	240	80	-	553.8	742.5	160	34.2	PLC 410-23	PLC 410-24 ^{1) 2) 4)}	1	М	120	160	P0
119	240	80	-	553.8	742.5	160	32.1	PLC 410-13-2-4	PLC 410-14-2-4 ^{1) 3) 4)}	1	TNG	120	160	P6
119.3	240	80	-	553.8	742.5	160	31.7	PLC 410-13-2-5	PLC 410-14-2-5	1	TNG	120	160	P6
120	200	62	-	372.8	549.1	120	16	PLC 49-202	PLC 49-203 ^{1) 2) 4)}	1	М	125	165	P0
	215	80	-	519.8	740.9	160	25.2	PLC 410-213	PLC 410-214 ^{1) 2) 4)}	1	М	125	165	P0
	240	80	-	553.8	742.5	160	33.7	PLC 410-13	PLC-410-14 1) 2) 4)	1	М	120	160	P0
	240	80	-	553.8	742.5	160	33.7	PLC 410-13-1	PLC 410-14-1 ^{1) 2) 4)}	1	М	120	160	P6
	240	80	-	553.8	742.5	160	31.7	PLC 410-13-2	PLC 410-14-2 ^{1) 3) 4)}	1	TNG	120	160	P6
129	240	80	-	539.6	775.4	160	30.2	PLC 410-33-2-4	PLC 410-34-2-4	1	TNG	135	180	P6
130	220	73	-	496.1	744.1	160		PLC 410-219-2	PLC 410-220-2	1	TNG	135	180	P6
	240	80	-	516.3	752.1	160	32.7	PLC 410-15	PLC 410-16 ^{1) 2) 4)}	1	М	135	180	P0
	240	80	-	516.3	752.1	160	30.65	PLC 410-15-2	PLC 410-16-2 ^{1) 3) 4)}	1	TNG	135	180	P6
	240	80	-	539.6	775.4	160	32.7	PLC 410-33-1	PLC 410-34-1 ^{1) 2) 4)}	1	М	135	180	P6
	240	80	-	539.6	775.4	160	30.2	PLC 410-33-2	PLC 410-34-2 1) 3) 4)	1	TNG	135	180	P6
	240	80	-	539.6	775.4	200	30.6	PLC 410-215	PLC 410-216	5	TNG	130	180	P6
	250	80	-	580.0	800.3	160	36.6	PLC 410-17	PLC 410-18 ^{1) 2) 4)}	1	М	135	180	P0
158	300	84	15	869.5	1214.3	160	58.3	PLC 411-200	PLC 411-201 ^{1) 2) 4)}	2	М	130	195	P0
159	300	84	15	869.5	1214.3	160	57.9	PLC 411-20	PLC 411-21 ^{1) 2) 4)}	2	М	130	195	P0
160	300	84	15	869.5	1214.3	160	57.5	PLC 411-10	PLC 411-12 ^{1) 2) 4)}	2	М	130	195	P0
180	320	86	12	713.5	1082.8	160	64.6	NJ2236M C4A450-900	NUC2236M C4 + HJ2236X16,33	2	М	150	215	P0
	320	86	15	713.5	1082.8	160	64.9	NJ2236XM C4	NUC2236M C4 + PLC 810-1	3	М	150	215	P0
	320	86	15	713.5	1082.8	160	64.9	NJ2236XMAS C4	NUC2236MAS C4 + PLC 810-1	3	MAS	150	215	P0
	320	86	17	713.5	1082.8	160	64.8	NJ2236XM C4	NUC2236M C4 + angle ring. NUP2236	4	М	150	215	P0

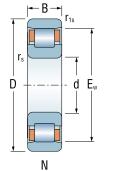
1) Pair of bearings is marked shortly e. g. PLC 410-13/14

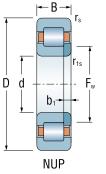
2) Machined brass cage (steel riveted) or -1 (cross piece riveted)

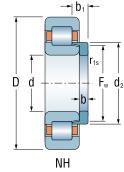
3) Glass-fiber reinforced polyamide cage, roller centred


4) Inner ring interchangeable


M – two piece machined brass cage, roller centred MAS – two piece machined brass cage with lubrication grooves, outer ring centred

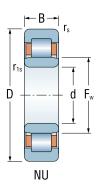


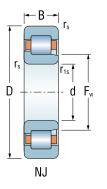

FOR LOCOMOTIVES

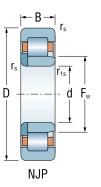


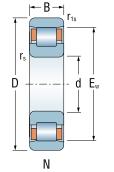
				Angle	Basic loa	ad rating	Limitin	a speed	Mas	s of									
Di	mensio	on	Bearings designation	ring	dyna- mic	static	for lubrication		Bea-	Angle-	Dimensions								
d	D	В		HJ	Cr	Cor	grease	oil	ring	ring	rs _{min}	r1s _{min}	Fw	Ew	d2	b	b1	s ¹⁾	
	mm				k	N	mi	n ⁻¹	k	g		mm							
90	190	43	NJ318EM	HJ318E	310.8	346.9	3 000	3 500	6.230	0.641	4	4	113.5		124	12	18.5	2	
	190	43	NU318EM	HJ318E	310.8	346.9	3 000	3 500	6.229	0.641	4	4	113.5		124	12	18.5	2	
	190	43	NJ318M	HJ318	234.9	258.4	3 200	3 800	6.070	0.667	4	4	115		125	12	21	2	
	190	43	N318		234.9	258.4	3 200	3 800	5.250		4	4		165				2	
	190	43	NU318M	HJ318	234.9	258.4	3 200	3 800	5.910	0.667	4	4	115		125	12	21	2	
	190	43	NU318MA	HJ318	234.9	258.4	3 200	3 800	5.910	0.667	4	4	115		125	12	21	2	
	190	43	NJ318	HJ318	234.9	258.4	3 200	3 800	5.520	0.667	4	4	115		125	12	21	2	
	190	43	NU318	HJ318	234.9	258.4	3 200	3 800	5.360	0.667	4	4	115		125	12	21	2	
95	200	45	NJ319EM		328.9	378.5	2 800	3 300	7.170		4	4	121.5					1.9	
	240	55	NJ419M		415.2	465.0	2 500	3 000	13.860		4	4	133.5					2.5	
	240	55	NU419M		415.2	465.0	2 500	3 000	13.570		4	4	133.5					2.5	
100	215	47	NU320EMA		379.1	424.3	2 700	3 200	8.840		4	4	127.5					2	
105	260	60	NJ421M	HJ421	515.1	585.1	2 200	2 700	17.620	1.740	4	4	144.5		159.7	16	27	2.5	
	260	60	NU421M	HJ421	515.1	585.1	2 200	2 700	17.250	1.740	4	4	144.5		159.7	16	27	2.5	
110	240	50	NJ322EM		439.6	507.6	2 400	2 800	12.006		4	4	143					2.9	
	240	50	NU322EM		439.6	507.6	2 400	2 800	11.806		4	4	143					2.9	
	240	50	NJ322M	HJ322	401.0	467.1	2 500	3 000	11.830	1.020	4	4	143		147.5	13	22.5	2.7	
	240	50	NJ322MA		401.0	467.1	2 500	3 000	11.830	1.020	4	4	143		147.5	13	22.5	2.7	
	240	50	N322M		401.0	467.1	2 500	3 000	11.420		4	4		207				2.7	
	240	50	NU322M	HJ322	401.0	467.1	2 500	3 000	11.580	1.020	4	4	143		147.5	13	22.5	2.7	
	280	65	NJ422M		569.5	654.7	2 100	2 500	22.350		4	4	155					2.7	
400	280	65	NU422M		569.5	654.7	2 100	2 500	21.880		4	4	155					2.7	
120	260	55	NU324M		465.1	534.1	2 400	2 800	14.7		4	4	154			14			
	260	55	NJ324M		465.1	534.1	2 400	2 800	14.7		4	4	154			14			
	260	55	NUP324M	11.100.0	465.1	534.1	2 400	2 800	14.7		4	4	154			14			
	260	55	NH324M	HJ324	465.1	534.1	2 400	2 800	14.7	1.4	4	4	154			14			
	260	55	NU324EM		516.2	592.8	2 200	2 700	15.2		4	4	154						
	310	72	NU424M		714.4	834.5	1 900	2 200	30.59		5	5	170						
	310	72	NJ424M		714.4	834.5	1 900	2 200	30.59		5	5	170						

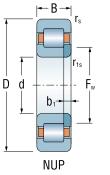
Permissible axial displacement out of central position – bearings with higher load rating – two piece machined brass cage, roller centred 1)

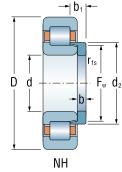

Е


М


- two piece machined brass cage, outer ring centred MA

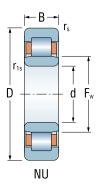

FOR LOCOMOTIVES


KI



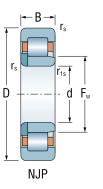
			Angle	Basic loa	ad rating	Limiting	n opood	Mas	s of									
Di	mensio	on	Bearings designation	ring	dyna- mic	static		for lubrication		Angle-	Dimensions							
d	D	В		HJ	Cr	Cor	grease	oil	ring	ring	rs _{min}	r1s _{min}	Fw	Ew	d2	b	b1	S1
	mm				k	N	mi	n ⁻¹	k	g				m	m			
130	280	58	NU326EM	HJ326E	603.2	715.6	2 000	2 400	18.600	1.700	4	4	167		182	14	23	2.9
	280	58	NJ326EM	HJ326E	603.2	715.6	2 000	2 400	19.000	1.700	4	4	167		182	14	23	2.9
140	250	42	NJP228EMA		385.1	502.0	2 300	2 800	9.650		4	4	169					1.6
	250	42	NU228EMA		385.1	502.0	2 300	2 800	9.440		4	4	169					1.6
	250	42	N228M		318.3	410.5	2 500	3 000	8.897		4	4		221				2.5
	250	42	NUP228M		318.3	410.5	2 500	3 000	9.870		4	4	169					
	250	42	NJ228M		318.3	410.5	2 500	3 000	9.330		4	4	169					2.5
	250	42	NU228M		318.3	410.5	2 500	3 000	9.110		4	4	169					2.5
	300	62			603.4	725.8	2 000	2 400	22.100		4	4	180					2.7
	300	62	NJ328M		603.4	725.8	2 000	2 400	22.840		4	4	180					2.7
	300	102	NJ2328EM		1 018.8	1 384.5	1 900	2 200	37.600		4	4	180					7.9
	300		NJP2328M		909.3	1 229.8	2 000	2 400	36.760		4	4	180					9.2
	300	102	NU2328EM		1 018.8	1 384.5	1 900	2 200	37.600		4	4	180					7.9
	300	102	NJ2328M	HJ2328	909.3	1 229.8	2 000	2 400	36.100	2.380	4	4	180		197.6	15	33.5	9.2
	300	102	NU2328M	HJ2328	909.3	1 229.8	2 000	2 400	35.300	2.380	4	4	180		197.6	15	33.5	9.2
150	270	45	NJP230EMA		440.2	581.3	2 200	2 700	12.520		4	4	182					2.4
	270	45	NJ230EMA		440.2	581.3	2 200	2 700	12.520		4	4	182					2.4
	270	45	NU230EMA		440.2	581.3	2 200	2 700	12.160		4	4	182					2.4
	270	45	NJ230EM		440.2	581.3	2 200	2 700	12.520		4	4	182					2.4
	270	45	NU230EM		440.2	581.3	2 200	2 700	12.000		4	4	182					2.4
	270	45	NUP230M		367.7	480.5	2 200	2 700	12.050		4	4	182					
	270	45	NJ230M		367.7	480.5	2 200	2 700	11.800		4	4	182					2.4
	270	45	NU230M		367.7	480.5	2 200	2 700	11.800		4	4	182					2.4
	320	65	NJ330EM		757.6	921.6	1 800	2 100	27.100		4	4	193					1.8
	320	65	NJ330M	HJ330	663.1	807.4	1 900	2 200	26.840	2.420	4	4	193		210	15	26.5	2.7
	320	65	NU330M	HJ330	663.1	807.4	1 900	2 200	26.280	2.420	4	4	193		210	15	26.5	2.7

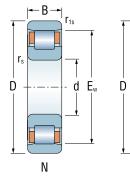
1) Permissible axial displacement out of central position

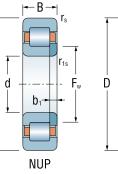

Е

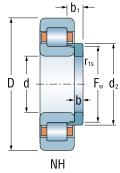
Μ

 bearings with higher load rating
 two piece machined brass cage, roller centred
 two piece machined brass cage, outer ring centred MA




FOR LOCOMOTIVES




I.

	Dimension			Angle	Basic load rating		Limiting speed		Mass of									
Di			Bearings designation	ring	dyna- mic	static for lubrication	Bea- ring	Angle- ring	Dimensions									
d	D	В		HJ	Cr	Cor	grease	oil	Tilly	nny	rs _{min}	r1s _{min}	Fw	Ew	d2	b	b1	s ¹
	mm				k	kN min ⁻¹		k	g	mm								
160	290	48	NJ232EM	HJ232E	498.6	666.4	2 000	2 400	14.70	1.520	4	4	195		206.2	12	20	2.5
	290	48	NJ232EM	HJ232E	498.6	666.4	2 000	2 400	14.70	1.520	4	4	195		206.2	12	20	2.5
	340	67	NJ332EM		857.8	1 053.2	1 700	2 000	32.20		4	4	195		204	12	20	2.5
170	310	52	NJ234EM		589.0	777.2	1 900	2 200	18.400		4	4	207					2.9
	310	52	NJ234EM	HJ234E	589.0	777.2	1 900	2 200	19.200	1.740	4	4	207		221.4	12	20	2.9
	310	52	NU234EM	HJ234E	589.0	777.2	1 900	2 200	16.600	1.740	4	4	207		221.4	12	20	2.9
180	280	46	NU1036M		334.6	474.5	2 100	2 500	9.858		2.1	2.1	205					3.6
	320	52	NJ236EM	HJ236E	611.3	826.0	1 800	2 100	19.500	1.820	4	4	217		230.5	12	20	2.9
	320	52	NU236EM	HJ236E	611.3	826.0	1 800	2 100	19.200	1.820	4	4	217		230.5	12	20	2.9
190	290	46	NJP1038EMA		411.2	612.0	1 970	2 360	12.100		2.1	2.1	214					2.5
	290	46	NU1038M		354.8	520.3	1 900	2 200	9.510		2.1	2.1	215					3.5
200	310	51	NUP1040M		381.9	567.1	1 900	2 200	14.750		2.1	2.1	229					
	310	51	NJ1040M		381.9	567.1	1 900	2 200	14.000		2.1	2.1	229					4.2
	310	51	NU1040M		381.9	567.1	1 900	2 200	13.804		2.1	2.1	229					4.2
	360	58	NJ240EM	HJ240E	749.9	1 033.7	1 500	1 800	27.900	2.710	4	4	243		257.8	14	23	2.9
	360	58	NU240EM	HJ240E	749.9	1 033.7	1 500	1 800	27.300	2.710	4	4	243		257.8	14	23	2.9

1) Permissible axial displacement out of central position

Е

Μ

 bearings with higher load rating
 two piece machined brass cage, roller centred
 two piece machined brass cage, outer ring centred MA

RULES OF MOUNTING AND DISMOUNTING OF BEARINGS

WARMING UP OF BEARING INNER RINGS

Bearings of higher diameter series, used mostly in railway vehicles, require a bigger force to be pressed on at tight fitting. Therefore warming up of inner rings of bearings is used advantageously at the time of mounting them.

The bearings can be warmed up:

- inductively
- by air in electric furnace

Sufficient thermal expansion is achieved at the temperature 80 – 100 degrees centigrade. In no case the temperature should go over 120 degrees centigrade during warming up. The abutment dimensions of the axle journal and axlebox must be checked by measuring prior to bearings mounting procedure. The ring faces must be seated on their whole circumferences. Prior to mounting works it is necessary to check if the marking on the bearing is in conformity with the data on the drawing and at the list of parts.

Protection of contact surfaces and lubrication

Before fitting of the bearings it is advantageous to coat the contact surface of the axle journal and axlebox with a fine thin layer of LFAG 3 paste or with some other suitable agent in order to prevent rise of contact corrosion. At the time of mounting procedure, the bearings will be filled with a base grease, the brand and quantity of which is specified by the railway company with the consent of the bearings manufacturer.

Conditions for assembling

Mounting works must be carried out at a dry and dustfree workplace. The bearings, axleboxes and accessories must be protected from humidity and dirtiness during storage, checking and mounting procedures.

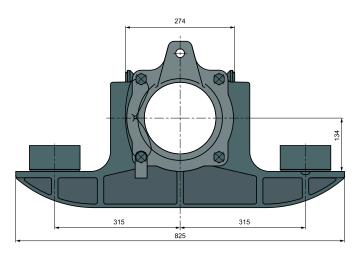
Dismounting of the bearings

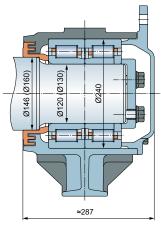
If the bearings are to be reused after dismounting, this procedure must be carried out professionally with the help of suitable jigs and in accordance with the beforehand fixed procedure at a dry and dustfree workplace.

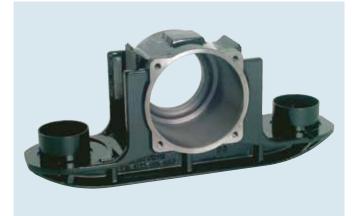
Jigs used for dismounting

It is important to be careful about that, only the ring which is to be pulled off was caught by the extracting jig. The force needed for dismounting must not be in any case carried through the rolling elements, since it would cause damage of raceways.

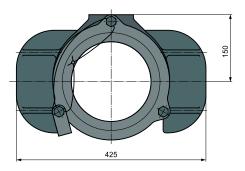
QUALITY MANAGEMENT

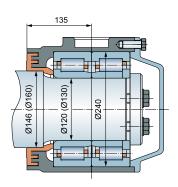

Production plants of the KINEX BEARINGS are certified in accordance with standards ISO 9001, ISO / TS 16 949, ISO 14 001 and BS OHSAS 18001 for the field of development and production of the roller and ball bearings by a certification Company TUV NORD Slovakia. KINEX BEARINGS prepares implementation of the international railway industry standard IRIS. Because of the amount of all certificates we work simultaneously on a complex quality management system that will allow us to joint the mutual requirements of those standards with effective implementation of other requirements.




FREIGHT WAGON AXLEBOXES

Axlebox BA 182


Bogie	Y 25
Axle load	22,5 tons
Cylindrical roller bearing	PLC 410-33-2/34-2 (WJ/WJP 130x240)
Maximum speed	120 kmph
Suspension	helical coil springs
Box material	spheroidal grafite cast iron



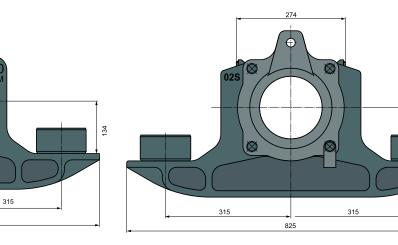
Axlebox BA 381							
Bogie	2 and 4 axle goods wagon						
Axle load	22.5 tons						
Cylindrical roller bearing	PLC 410-33-2/34-2 (WJ/WJP 130x240)						
Maximum speed	120 kmph						
Suspension	leaf spring						
Box material	spheroidal grafite cast iron						

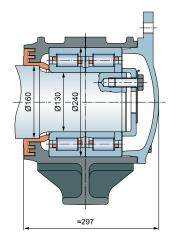
FREIGHT WAGON AXLEBOXES

 \bigcirc

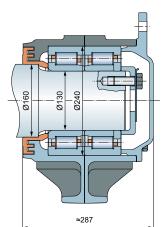
 \bigcirc

315


Axlebox 80 VM


Bogie	Y 25
Axle load	25 tons
Cylindrical roller bearing	PLC 410-33-2/34-2 (WJ/WJP 130x240)
Maximum speed	120 kmph
Suspension	helical coil springs
Box material	cast steel

 \odot


Axlebox BA 386 (02S)

Bogie	Y 25
Axle load	25 tons
Cylindrical roller bearing	PLC 410-33-2/34-2 (WJ/WJP 130x240)
Maximum speed	120 kmph
Suspension	helical coil springs
Box material	spheroidal grafite cast iron

825

134

ELECTRICALLY INSULATED BEARINGS

Passage of electric current through rolling bearings used in electric motors is possible to avoid using bearings with insulated layer on aluminium oxide base. The insulated layer is coated on the outside diameter and the faces of the outer ring. The layer prevents creation of damages caused by electric current passing through individual parts of the bearing and thereby increases bearing field reliability. The rolling bearings with insulated layer are interchangeable with standard rolling bearings and are in accordance with requirements of ISO standards. The layer resistance for breakdown voltage is 500 and 1000 V.

Bearing designation:

- for breakdown voltage up to 500 V : SP1A
- for breakdown voltage up to 1000 V : SP2A

RESEARCH AND DEVELOPMENT

KINEX BEARINGS HAS BEEN GIVING CONTINUOUS ATTENTION TO:

- · new products development
- present products improvement

An important factor of quality improvement of cylindrical roller bearings is continuing design improvement that optimises lubrication, increases loading capacity and minimizes edge stresses.

Continuing design improvement increases bearing's life and reliability.

PRODUCTION, INSPECTION AND ROLLING BEARINGS TESTING

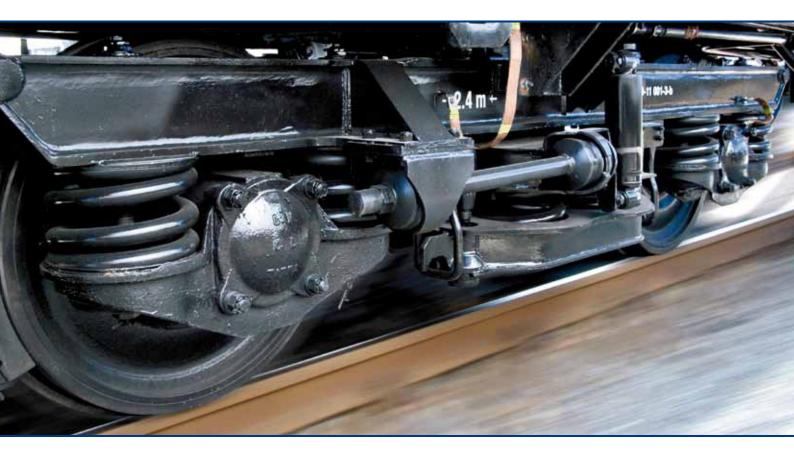
The production of axlebox cylindrical roller bearings used in railway industry is assured in accordance with requirements of european standard EN 12 080.

Rig performance tests of axlebox cylindrical roller bearings according to EN 12082, UIC 515-5.

- axle load 22,5 tons, speed 120 km per hour
- axle load 16 tons, speed 200 km per hour
- axle load 25 tons, speed 120 km per hour


Axlebox bearings performance test rig

Inspection



STANDARD SPECIFICATIONS

TECHNICAL SUPPORT FOR USERS OF THE BEARINGS

We recommend consulting of all topics related with mounting structure and operation of the bearings in railway vehicles and equipments with technical service of KINEX BEARINGS at e-mail address: servis@kinex-klf.sk

Contact:

KINEX BEARINGS, a.s. 1. maja 71/36 014 83 Bytca, Slovakia

www.kinex.sk

EDITION: RI_August_2010